Назад | Оглавление | Домой | Далее

4.1.        Полигональные сетки

Полигональная сетка представляет собой совокупность ребер, вершин и многоугольников. Вершины соединяются ребрами, а многоугольники рассматриваются как последовательности ребер или вершин. Сетку можно представить несколькими различными способами, каждый из них имеет свои достоинства и недостатки. Для оценки оптимальности представления используют следующие критерии:

·      Объем требуемой памяти;

·      Простота идентификации ребер, инцидентных вершине;

·      Простота идентификации многоугольников, которым принадлежит данное ребро;

·      Простота процедуры поиска вершин, образующих ребро;

·      Легкость определения всех ребер, образующих многоугольник;

·      Простота получения изображения полигональной сетки;

·      Простота обнаружения ошибок в представлении (например, отсутствие ребра или вершины или многоугольника).

Рассмотрим подробнее три способа описания полигональных сеток.

4.1.1.       Явное задание многоугольников

  Каждый многоугольник можно представить в виде списка координат его вершин:

 

P = ((x1, y1, z1), (x2, y2, z2), … , (xn, yn, zn))

 

  Вершины запоминаются в том порядке,  в котором они встречаются при обходе вокруг многоугольника. При этом все последовательные вершины многоугольника (а также первая и последняя) соединяются ребрами. Для каждого отдельного многоугольника данный способ записи является эффективным, однако для полигональной сетки дает потери памяти вследствие дублирования информации о координатах общих вершин.

  Полигональная сетка изображается путем вычерчивания ребер каждого многоугольника, однако это приводит к тому, что общие ребра рисуются дважды – по одному разу для каждого из многоугольников.

4.1.2.       Задание многоугольников с помощью указателей в список вершин

При использовании этого представления каждый узел полигональной сетки запоминается лишь один раз в списке вершин V =((x1, y1, z1), … , (xn, yn, zn)). Многоугольник определяется списком указателей (или индексов) в списке вершин. Многоугольник, составленный из вершин 3, 5, 7 и 10 этого списка, представляется как Р = (3, 5, 7, 10).

Такое представление имеет ряд преимуществ по сравнению с явным заданием многоугольников. Поскольку каждая вершина многоугольника запоминается только один раз, удается сэкономить значительный объем памяти. Кроме того, координаты вершины можно легко изменять. Однако все еще не просто отыскивать многоугольники с общими ребрами. Ребра при изображении всей полигональной фигуры по-прежнему рисуются дважды. Эти две проблемы можно решить, если описывать ребра в явном виде.

4.1.3.       Явное задание ребер

В этом представлении имеется список вершин V, однако будем рассматривать теперь многоугольник как совокупность указателей на элементы списка ребер, в котором ребра встречаются лишь один раз. Каждое ребро в списке ребер указывает на две вершины в списке вершин, определяющие это ребро, а также на один или два многоугольника, которым это ребро принадлежит. Таким образом, мы описываем многоугольник как P =(E1, ..., E2), а ребро — как Е = (V1, V2, P1, P2). Если ребро принадлежит только одному многоугольнику, то либо P1 либо P2 – пусто.

При явном задании ребер полигональная сетка изображается путем вычерчивания не всех многоугольников, а всех ребер. В результате удается избежать многократного рисования общих ребер. Отдельные многоугольники при этом также изображаются довольно просто.

В некоторых приложениях ребра полигональных сеток являются общими для более чем двух многоугольников. Рассмотрим, например, случай в картографии, когда такие подразделения, как округа, штаты и т. д., описываются многоугольниками. Ребро (или последовательность ребер), представляющее часть границы между двумя штатами, является также границей округа в каждом штате, а возможно, и города. Таким образом, ребро может принадлежать одновременно шести многоугольникам. Если принять во внимание деление городов на районы, избирательные округа и школьные участки, то это число соответственно возрастет. Для таких приложений описания ребер могут быть расширены, чтобы включить произвольное число многоугольников: Е = (V1, V2, P1, P2, …, Pn).

Ни в одном из этих представлений задача определения ребер, инцидентных вершине, не является простой: для ее решения необходимо перебрать все ребра. Конечно, для определения таких отношений можно непосредственно использовать дополнительную информацию.

Назад | Оглавление | Домой | Далее